Conversational User Interfaces in Smart Homecare Interactions: A Conversation Analytic Case Study
Saul Albert, Magnus Hamann, Elizabeth Stokoe
Abstract:
Policymakers are increasingly interested in using virtual assistants to augment social care services in the context of a demographic ageing crisis. At the same time, technology companies are market- ing conversational user interfaces (CUIs) and smart home systems as assistive technologies for elderly and disabled people. However, we know relatively little about how today’s commercially available CUIs are used to assist in everyday homecare activities, or how care service users and human care assistants interpret and adapt these technologies in practice. Here we report on a longitudinal conversation analytic case study to identify, describe, and share how CUIs can be used as assistive conversational agents in practice. The analysis reveals that, while CUIs can augment and support new capabilities in a homecare environment, they cannot replace the delicate interactional work of human care assistants. We ar- gue that CUI design is= best inspired and underpinned by a better understanding of the joint coordination of homecare activities
References
Alač, M., Gluzman, Y., Aflatoun, T., Bari, A., Jing, B., & Mozqueda, G. (2020). How Everyday Interactions with Digital Voice Assistants Resist a Return to the Individual. Evental Aesthetics, 9(1), 51.
Albert, S., & Hamann, M. (2021). Putting wake words to bed: We speak wake words with systematically varied prosody, but CUIs don’t listen. CUI 2021 – 3rd Conference on Conversational User Interfaces, 1–5. https://doi.org/10.1145/3469595.3469608
Amazon Echo. (2019). Amazon Alexa: Sharing is Caring. https://www.youtube.com/watch?v=225Wlg3pkdo
Archibald, M. M., & Barnard, A. (2018). Futurism in nursing: Technology, robotics and the fundamentals of care. Journal of Clinical Nursing, 27(11–12), 2473–2480. https://doi.org/10.1111/jocn.14081
Bedaf, S., Gelderblom, G. J., de Witte, L., Syrdal, D., Lehmann, H., Amirabdollahian, F., Dautenhahn, K., & Hewson, D. (2013). Selecting services for a service robot: Evaluating the problematic activities threatening the independence of elderly persons. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 1–6. https://doi.org/10.1109/ICORR.2013.6650458
Casey, D., Felzmann, H., Pegman, G., Kouroupetroglou, C., Murphy, K., Koumpis, A., & Whelan, S. (2016). What People with Dementia Want: Designing MARIO an Acceptable Robot Companion. In K. Miesenberger, C. Bühler, & P. Penaz (Eds.), Computers Helping People with Special Needs (pp. 318–325). Springer International Publishing. https://doi.org/10.1007/978-3-319-41264-1_44
Chappell, N. L., Dlitt, B. H., Hollander, M. J., Miller, J. A., & McWilliam, C. (2004). Comparative Costs of Home Care and Residential Care. The Gerontologist, 44(3), 389–400. https://doi.org/10.1093/geront/44.3.389
Dowling, S., Williams, V., Webb, J., Gall, M., & Worrall, D. (2019). Managing relational autonomy in interactions: People with intellectual disabilities. Journal of Applied Research in Intellectual Disabilities, 32(5), 1058–1066. https://doi.org/10.1111/jar.12595
García-Soler, Á., Facal, D., Díaz-Orueta, U., Pigini, L., Blasi, L., & Qiu, R. (2018). Inclusion of service robots in the daily lives of frail older users: A step-by-step definition procedure on users’ requirements. Archives of Gerontology and Geriatrics, 74, 191–196. https://doi.org/10.1016/j.archger.2017.10.024
Goodwin, C. (2000). Action and embodiment within situated human interaction. Journal of Pragmatics, 32(10), 1489–1522. https://doi.org/10.1016/S0378-2166(99)00096-X
Harmo, P., Taipalus, T., Knuuttila, J., Vallet, J., & Halme, A. (2005). Needs and solutions—Home automation and service robots for the elderly and disabled. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3201–3206. https://doi.org/10.1109/IROS.2005.1545387
House of Lords. (2021). Ageing: Science, Technology and Healthy Living (p. 132). House of Lords Science and Technology Select Committee. https://publications.parliament.uk/pa/ld5801/ldselect/ldsctech/183/183.pdf
Jackson, L., Haagaard, A., & Williams, R. (2022). Disability Dongle | Platypus. https://blog.castac.org/2022/04/disability-dongle/
Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M.-T. (2014). Socially Assistive Robots in Elderly Care: A Mixed-Method Systematic Literature Review. International Journal of Human–Computer Interaction, 30(5), 369–393. https://doi.org/10.1080/10447318.2013.873278
Kendrick, K. H., & Drew, P. (2016). Recruitment: Offers, Requests, and the Organization of Assistance in Interaction. Research on Language and Social Interaction, 49(1), 1–19. https://doi.org/10.1080/08351813.2016.1126436
Kingston, A., Comas-Herrera, A., & Jagger, C. (2018). Forecasting the care needs of the older population in England over the next 20 years: Estimates from the Population Ageing and Care Simulation (PACSim) modelling study. The Lancet Public Health, 3(9), e447–e455. https://doi.org/10.1016/S2468-2667(18)30118-X
Krummheuer, A. L., Rehm, M., & Rodil, K. (2020). Triadic Human-Robot Interaction. Distributed Agency and Memory in Robot Assisted Interactions. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 317–319. https://doi.org/10.1145/3371382.3378269
Levine, D. M., Ouchi, K., Blanchfield, B., Diamond, K., Licurse, A., Pu, C. T., & Schnipper, J. L. (2018). Hospital-Level Care at Home for Acutely Ill Adults: A Pilot Randomized Controlled Trial. Journal of General Internal Medicine, 33(5), 729–736. https://doi.org/10.1007/s11606-018-4307-z
Lipp, B. (2022). Caring for robots: How care comes to matter in human-machine interfacing. Social Studies of Science, 03063127221081446. https://doi.org/10.1177/03063127221081446
Maguire, D., Honeyman, M., Fenney, D., & Jabbal, J. (2021). Shaping the future of digital technology in health and social care. The King’s Fund. https://www.kingsfund.org.uk/publications/future-digital-technology-health-social-care
Sacks, H. (1984). On doing ‘being ordinary’. In J. Heritage & J. M. Atkinson (Eds.), Structures of social action: Studies in conversation analysis (pp. 413–429). Cambridge University Press.
Share, P., & Pender, J. (2018). Preparing for a Robot Future? Social Professions, Social Robotics and the Challenges Ahead. Irish Journal of Applied Social Studies, 18(1). https://doi.org/10.21427/D7472M
Stokoe, E., Sikveland, R. O., Albert, S., Hamann, M., & Housley, W. (2020). Can humans simulate talking like other humans? Comparing simulated clients to real customers in service inquiries. Discourse Studies, 22(1), 87–109. https://doi.org/10.1177/1461445619887537
Topol, E. (2019). The Topol Review: Preparing the healthcare workforce to deliver the digital future (p. 103). Health Education England. https://topol.hee.nhs.uk/wp-content/uploads/HEE-Topol-Review-2019.pdf
Tuisku, O., Pekkarinen, S., Hennala, L., & Melkas, H. (2018). “Robots do not replace a nurse with a beating heart”: The publicity around a robotic innovation in elderly care. Information Technology & People, 32(1), 47–67. https://doi.org/10.1108/ITP-06-2018-0277
White, G. W., Lloyd Simpson, J., Gonda, C., Ravesloot, C., & Coble, Z. (2010). Moving from Independence to Interdependence: A Conceptual Model for Better Understanding Community Participation of Centers for Independent Living Consumers. Journal of Disability Policy Studies, 20(4), 233–240. https://doi.org/10.1177/1044207309350561Post navigation
Wright, J. (2021). The Alexafication of Adult Social Care: Virtual Assistants and the Changing Role of Local Government in England. International Journal of Environmental Research and Public Health, 18(2), Article 2. https://doi.org/10.3390/ijerph18020812
Wright, J. (2023). Robots won’t save Japan: An ethnography of eldercare automation. ILR Press, an imprint of Cornell University Press.