Conversational User Interfaces in Smart Homecare Interactions: A Conversation Analytic Case Study

Saul Albert, Magnus Hamann, Elizabeth Stokoe

Abstract:

Policymakers are increasingly interested in using virtual assistants to augment social care services in the context of a demographic ageing crisis. At the same time, technology companies are market- ing conversational user interfaces (CUIs) and smart home systems as assistive technologies for elderly and disabled people. However, we know relatively little about how today’s commercially available CUIs are used to assist in everyday homecare activities, or how care service users and human care assistants interpret and adapt these technologies in practice. Here we report on a longitudinal conversation analytic case study to identify, describe, and share how CUIs can be used as assistive conversational agents in practice. The analysis reveals that, while CUIs can augment and support new capabilities in a homecare environment, they cannot replace the delicate interactional work of human care assistants. We ar- gue that CUI design is= best inspired and underpinned by a better understanding of the joint coordination of homecare activities

References

Alač, M., Gluzman, Y., Aflatoun, T., Bari, A., Jing, B., & Mozqueda, G. (2020). How Everyday Interactions with Digital Voice Assistants Resist a Return to the Individual. Evental Aesthetics9(1), 51.

Albert, S., & Hamann, M. (2021). Putting wake words to bed: We speak wake words with systematically varied prosody, but CUIs don’t listen. CUI 2021 – 3rd Conference on Conversational User Interfaces, 1–5. https://doi.org/10.1145/3469595.3469608

Amazon Echo. (2019). Amazon Alexa: Sharing is Caring. https://www.youtube.com/watch?v=225Wlg3pkdo

Archibald, M. M., & Barnard, A. (2018). Futurism in nursing: Technology, robotics and the fundamentals of care. Journal of Clinical Nursing27(11–12), 2473–2480. https://doi.org/10.1111/jocn.14081

Bedaf, S., Gelderblom, G. J., de Witte, L., Syrdal, D., Lehmann, H., Amirabdollahian, F., Dautenhahn, K., & Hewson, D. (2013). Selecting services for a service robot: Evaluating the problematic activities threatening the independence of elderly persons. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 1–6. https://doi.org/10.1109/ICORR.2013.6650458

Casey, D., Felzmann, H., Pegman, G., Kouroupetroglou, C., Murphy, K., Koumpis, A., & Whelan, S. (2016). What People with Dementia Want: Designing MARIO an Acceptable Robot Companion. In K. Miesenberger, C. Bühler, & P. Penaz (Eds.), Computers Helping People with Special Needs (pp. 318–325). Springer International Publishing. https://doi.org/10.1007/978-3-319-41264-1_44

Chappell, N. L., Dlitt, B. H., Hollander, M. J., Miller, J. A., & McWilliam, C. (2004). Comparative Costs of Home Care and Residential Care. The Gerontologist44(3), 389–400. https://doi.org/10.1093/geront/44.3.389

Dowling, S., Williams, V., Webb, J., Gall, M., & Worrall, D. (2019). Managing relational autonomy in interactions: People with intellectual disabilities. Journal of Applied Research in Intellectual Disabilities32(5), 1058–1066. https://doi.org/10.1111/jar.12595

García-Soler, Á., Facal, D., Díaz-Orueta, U., Pigini, L., Blasi, L., & Qiu, R. (2018). Inclusion of service robots in the daily lives of frail older users: A step-by-step definition procedure on users’ requirements. Archives of Gerontology and Geriatrics74, 191–196. https://doi.org/10.1016/j.archger.2017.10.024

Goodwin, C. (2000). Action and embodiment within situated human interaction. Journal of Pragmatics32(10), 1489–1522. https://doi.org/10.1016/S0378-2166(99)00096-X

Harmo, P., Taipalus, T., Knuuttila, J., Vallet, J., & Halme, A. (2005). Needs and solutions—Home automation and service robots for the elderly and disabled. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3201–3206. https://doi.org/10.1109/IROS.2005.1545387

House of Lords. (2021). Ageing: Science, Technology and Healthy Living (p. 132). House of Lords Science and Technology Select Committee. https://publications.parliament.uk/pa/ld5801/ldselect/ldsctech/183/183.pdf

Jackson, L., Haagaard, A., & Williams, R. (2022). Disability Dongle | Platypus. https://blog.castac.org/2022/04/disability-dongle/

Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M.-T. (2014). Socially Assistive Robots in Elderly Care: A Mixed-Method Systematic Literature Review. International Journal of Human–Computer Interaction30(5), 369–393. https://doi.org/10.1080/10447318.2013.873278

Kendrick, K. H., & Drew, P. (2016). Recruitment: Offers, Requests, and the Organization of Assistance in Interaction. Research on Language and Social Interaction49(1), 1–19. https://doi.org/10.1080/08351813.2016.1126436

Kingston, A., Comas-Herrera, A., & Jagger, C. (2018). Forecasting the care needs of the older population in England over the next 20 years: Estimates from the Population Ageing and Care Simulation (PACSim) modelling study. The Lancet Public Health3(9), e447–e455. https://doi.org/10.1016/S2468-2667(18)30118-X

Krummheuer, A. L., Rehm, M., & Rodil, K. (2020). Triadic Human-Robot Interaction. Distributed Agency and Memory in Robot Assisted Interactions. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 317–319. https://doi.org/10.1145/3371382.3378269

Levine, D. M., Ouchi, K., Blanchfield, B., Diamond, K., Licurse, A., Pu, C. T., & Schnipper, J. L. (2018). Hospital-Level Care at Home for Acutely Ill Adults: A Pilot Randomized Controlled Trial. Journal of General Internal Medicine33(5), 729–736. https://doi.org/10.1007/s11606-018-4307-z

Lipp, B. (2022). Caring for robots: How care comes to matter in human-machine interfacing. Social Studies of Science, 03063127221081446. https://doi.org/10.1177/03063127221081446

Maguire, D., Honeyman, M., Fenney, D., & Jabbal, J. (2021). Shaping the future of digital technology in health and social care. The King’s Fund. https://www.kingsfund.org.uk/publications/future-digital-technology-health-social-care

Sacks, H. (1984). On doing ‘being ordinary’. In J. Heritage & J. M. Atkinson (Eds.), Structures of social action: Studies in conversation analysis (pp. 413–429). Cambridge University Press.

Share, P., & Pender, J. (2018). Preparing for a Robot Future? Social Professions, Social Robotics and the Challenges Ahead. Irish Journal of Applied Social Studies18(1). https://doi.org/10.21427/D7472M

Stokoe, E., Sikveland, R. O., Albert, S., Hamann, M., & Housley, W. (2020). Can humans simulate talking like other humans? Comparing simulated clients to real customers in service inquiries. Discourse Studies22(1), 87–109. https://doi.org/10.1177/1461445619887537

Topol, E. (2019). The Topol Review: Preparing the healthcare workforce to deliver the digital future (p. 103). Health Education England. https://topol.hee.nhs.uk/wp-content/uploads/HEE-Topol-Review-2019.pdf

Tuisku, O., Pekkarinen, S., Hennala, L., & Melkas, H. (2018). “Robots do not replace a nurse with a beating heart”: The publicity around a robotic innovation in elderly care. Information Technology & People32(1), 47–67. https://doi.org/10.1108/ITP-06-2018-0277

White, G. W., Lloyd Simpson, J., Gonda, C., Ravesloot, C., & Coble, Z. (2010). Moving from Independence to Interdependence: A Conceptual Model for Better Understanding Community Participation of Centers for Independent Living Consumers. Journal of Disability Policy Studies20(4), 233–240. https://doi.org/10.1177/1044207309350561Post navigation

Wright, J. (2021). The Alexafication of Adult Social Care: Virtual Assistants and the Changing Role of Local Government in England. International Journal of Environmental Research and Public Health, 18(2), Article 2. https://doi.org/10.3390/ijerph18020812

Wright, J. (2023). Robots won’t save Japan: An ethnography of eldercare automation. ILR Press, an imprint of Cornell University Press.

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.